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Abstract

The kinetic compensation effect observed in heterogencous non-isothermal kinetics is
only an apparent effect. In general, the correlation derived between the kinetic parameters £
and log A from TG curves can be described by means of a non-linear compensation law, ex-
pressed by Eq. (14). This equation may become approximately linear in certain particular
cases, i.e. it may change into an isokinetic relation. The validity of the non-linear compensa-
tion law has been tested by using over 1000 sets of kinctic parameters reporied carlier.

Keywords: isokinetic relations, kinetic compensation effect, non-isothermal k; ~=tics. thermal de-
composition, thermogravimetry

Introduction

It has been observed that the kinetic compensation effect (CE) apparently
also operates in thermal decomposition reactions {1, 2]. In general, the CE obeys
the following linear compensation law (CL):

logA =aE+ b (1)

A is the pre-exponential factor in the Arrhenius equation and E is the activation
energy. The logarithmic form of the Arrhenius equation yields for the tempera-
ture 7; the expression

logA = (RTin10)"'E + logk; (2)

Obviously, if a CE operates in a set of processes, this implies the existence of an
isokinetic temperature 7 at which the rate constants of all processes have the
same value k. Accordingly, the compensation parameters @ and b in Eq. (1)
merely have the meanings
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922 ZSAKO: ISOKINETIC RELATIONS

a=(RTin10)" and b =logk (3)

In studies of the thermal decompositions of solids, thermogravimetric (TG)
investigations are frequently performed under dynamic temperature conditions,
mainly by using constant heating rates g. A considerable number of calculation
techniques have been developed to derive kinetic parameters from TG curves.

The basic relation utilized in a major proportion of calculation techniques is

do

A
———— = —exp{-E/RT}dT
Aoy g PUHRT) S

where @ is the transformation degree and » is the apparent reaction order. Its in-
tegrated form [3]

. AE
glay = qu()») (5
where

A

P do —x_=2 . E
giny=|——— and plx)=|e x dx with x=—-
{ (1-o)" i RT

is the equation <f a TG curve. In fact, Eq. (5) represents a family of functions de-
pending on three parameters, n, £ and A. Thus, calculation techniques aiming at
deriving kineiic parameters are in fact variational methods, allowing us to obtain
the parameter values n, £ and A that ensure the best fit of Eq. (5) to the experi-
mental TG curve, i.e. these parameters are simply mathematical, variational pa-
rameters, without any clear physical meaning. They are not real kinetic parame-
ters and they have nothing to do with the reaction order, activation energy or ac-
tivation entropy of any process that actually occurs in the system. They are the ki-
nctic paramcters of a hypothetical n-th-order homogeneous reaction, the conver-
sion of which simulates the expeirmentally found TG curve.

Compensation effect in TG kinetics

The rate constant of the hypothetical homogeneous reaction simulating the
TG curve vanishes at low temperatures. It incicases with incicasing 7, and i
must attain a finite value at the temperature of decomposition of the solid. Thus,
if a certain number of substances have approximately the same decomposition
temperature, there will be a relatively narrow temperature interval in which the
rate constants of the thermal decompositions of all these substances will have al-
most the same value. Consequently, a linear CL of type (1) will operate, and, in
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expression (3) for the slope @ of the straight line logA vs. E, T; will represent sim-
ply the decomposition temperature [4].

As shown earlier [5], a linear relation of type (1) may be valid for a set of TG
curves situated in the same temperature interval, but it may also be consistent
with TG curves corresponding to very different decomposition temperatures. In
the latter case, with increasing E the TG curves will be shifted towards higher
temperatures if k; has relatively large values, but towards lower ones if k; has low
values.

In our earlier papers, the thermal decompositions of a considerahle number of
substances were studied under dynamic temperature conditions and almost
1200 sets of kinetic parameters n, E and logA have been reported. For substances
with related structures, or for a given compound studied under different working
conditions, the kinetic parameters derived frequently obeyed the kinetic CL (1).
We tested the hypothesis that in expression (3) for the parameter a, T means a
certain decomposition temperature. Since the definition and the experimental
determination of the decomposition temperature are very difficult, we suggested
to take in relation (3) the mean value of T (i.e. the temperature at which the con-
version attains a degree of 0.1) for T; [6]. The calculated

a = (RTo In10)"" (6)

was observed to be very close to the slope a of the straight line (1).

In a previous paper [7], all the experimental data published earlier were pro-
cessed by dividing them into smaller sets on the basis of the 7o, values, irrespec-
tive of the nature of the chemical process. For each set, the parameters a and b
were derived by performing a linear regression analysis. In all 7y 1 intervals, the
linearity of the logA vs. E plots was observed to be very good, the correlation co-
efficient values always being higher than 0.99. The isokinetic temperature corre-
sponding to the parameter « obtained did not differ very much from 7, ;. As con-
cerns the parameter b=log ko 1, its values were situated between —2.3 and —4 and
were generally close to —3. This result allowed us to define a ‘theoretical’ pre-ex-
ponential factor [8] by means of the relation

logA’ = (RTo In10) 'E - 3 (7

i.e. by taking ;=75 and log ki=—3 in Eqs (3).

In the present paper, we set out to test approximation (7) for the Kinetic pa-
rameters reported earlier. For this purpose, 1152 pairs of Ty, and E values were
used to calculate logA’ values and the latter were compared with logA values de-
rived directly from the TG curves. The results are presented in Table 1. In this Ta-
ble, the number N of logA’ values satisfying the condition

llogA’ — logAl < A (&)

J. Thermal Anal., 54, 1998



924 ZSAKO: ISOKINETIC RELATIONS

is given for different A values. u and v are the parameters of the equation
logA = ulogA” + v )

These parameters were established by means of linear regression; ris the cor-
relation coefficient. Obviously, if Eq. (7) gave the exact values of logA, one
would have u=r=1 and v=0. It is clear from Table 1 that Eq. (7) may be consid-
ered to be a quite good approach. Nevertheless, in the plot logA vs. logA” the
points are rather scattered, since only about 20% of them satisfy condition (8) for
A=0.1.

Table 1 Testing of Eq. (7)

A N u v ¥

0.1 252 0.999 0.008 0.5999
0.2 468 0.997 0.022 0.9999
0.3 687 0.994 0.043 0.9999
0.4 846 0.992 0.066 0.9998
0.5 960 0.990 0.078 0.9998
0.6 1044 0.988 0.1067 0.9998
2.0 1152 0.987 0.117 0.9996

Derivation of a non-linear compensation law

In order to obtain a better approach, the correlation between 7;, 7y ) and & was
studied. Let us consider the equation of the TG curve, i.e. Eq. (5). The exponen-
tial integral p(x) may be approximated [9, 10] as

-2

p) =™ 25 (10)

X

which leads to the expression

E 2RTRT*?
Lo = [1 - T)RTexp{—E/RT} (11)

On the other hand, if a CE operates, A will obey Eq. (2). Thus, for a=0.1, by com-
bining Eqs (2), (5) and (11), we obtain

Iog[l - %@To,l}i&l = (RTo11n10)"E = log{g(o.l)ﬁ%} — (RTIn10)'E  (12)

Equation (12) allows us to calculate Ty ; as a function of 75, ki, £, n and ¢g. As
an example, apparently first-order reactions were considered for g=10 K min '=
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Table 2 7, , values calculated by means of Eq.(12). n=1, g=1/6 K s, T=400K

Ef logk;
kJ mol™ _5 4 3 ) _1
50 535 454 394 347 309
100 473 436 404 377 353
200 440 422 407 392 378
400 422 413 406 398 391
8§00 412 408 404 400 396

1/6 K s™'. Some illustrative results are presented in Table 2. Inspection of this Ta-
ble shows that with increasing E the To; value may decrease (logki=—4 or —5), but
it may also increase (logki=—2 or —1). The interval ATy in which 7, varies as a
function of E also depends upon k; and it has a minimum value A7} ; at a certain
ki. The log k; values corresponding to A, Ty ;1 , as well as those for which To.=T;,
are given in Table 3. It may be seen that, with decreasing E, the log k; value cor-
responding to To,=T; approaches the value at which 7, becomes practically in-
dependent of £ and this value is not very far from —3. Consequently, the approxi-
mations 7i=7o, and log ki=-3 are justified to some extent, but these are very
rough approximations. At any rate, an apparent CE may be expected if the ther-
mal decomposition occurs in approximately the same temperature interval, but
the exact relation between A and E is more complicated than the simple linearity
expressed by Eq. (2).

Table 3 logk; values corresponding to A 7, , and to 7, =T,

T/ AT E/kJ mol™

K mod 50 100 200 400 800

400 3.2 3.1 28 2.6 23 20

800 37 236 34 -3 29 2.6
1200 4.0 -3.9 -3.7 3.5 3.2 29

A better approximation may be obtained by combining Egs (5) and (11),
which leads for 0=0.1 to the expression

logA = (RTo_llnIO)_lE + loglg(0.1)gE] - log[RToz,l[l - 21‘2:0'1 H (13)

In general, 2RT1/E<0.2. Among the 1152 cases considered in the present paper,
there are only 13 exceptions and even in these cases 2RT1/E does not exceed
0.25. On the other hand, in all cases —1<n<4 and consequently —1 .02<logg(0.1)<
—0.91. Since logR=0.92, we always have
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2RT
-1.94 < [log 2(0.1) - logR{l - —EO—IH <-1.73

Therefore, by taking —1.85 for the expression in square brackets, the approxima-
tion seems to be quite realistic and instead of Eq. (7) we obtain

logA’ = (RTo1n10)"'E + log(gE / Tg1) — 1.85 (14)

Equation (14) allows us to derive better approximations of the pre-exponen-
tial factor. Equation (14) was tested as for Eq. (7) and the results are presented in
Table 4. Obviously, Eq. (14) is a much better approximation than Eq. (7): the
slope of the straight line logA vs. logA” is nearer to 1, the ordinate intercept is
nearer to 0 and the correlation coefficient is higher for Eq. (14) than for Eq. (7).
The values are much less scattered and over 80% of the logA — logA” pairs satisfy
condition (8) for A=0.1.

Table 4 Testing of Eq. (14)

N u v r
0.1 956 0.999 0.002 0.99999
0.2 1020 0.99% 0.036 0.99999
0.3 1067 0.998 0.034 0.99999
0.4 1104 0.998 0.042 0.99998
0.5 1119 0.998 0.042 0.99997
0.6 1125 0.998 0.042 0.99996
2.0 1152 0.997 0.063 0.99989

We can conclude that Eq. (14) describes the correlation between logA and £
very well, i.e. for the kinetic parameters derived from TG curves it is a much bet-
ter CL than Eq. (1). Obviously, it is not a linear CL and therefore it is not an isok-
inetic relation.

Some particular cases of a linear CL.

Equation (14) may become an isokinetic relation if log(gETo1) =const.. This
happens, for example, when kinetic parameters are derived from a single TG
curve by means of different calculation techniques. In this case, the g and 7y, val-
ues are identical and E varies in a relatively narrow interval. Thus, it is not sur-
prising that, in a kinetic analysis of the TG curves of some lanthanide complexes,
with the use of 19 different conversion functions g(a), the kinetic parameters
obeyed a lincar CL with corrclation cocfficients higher than 0.999 [11] and 7,
corresponding to the slope of the straight line was found to be close to T, [7].
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Table 5 Kinetic parameters obeying a linear compensation law
Compound K rggn'l TIO<—‘/ kI r{jll/()rl logA loga’ Ref.
[Co(NCO),py,] 5 323 45.6 40 408 20
[Co(NCS),(o-tol),] 2 355 59.7 5.1 5.12 21
[Co(NCS),(o-tol),] 5 364 552 4.6 4.61 21
[Co(NCS),(p-anis),] 5 385 62.7 5.2 5.20 21
[Co(DH),(p-Br-an),]NCS 15 408 61.0 4.9 4.91 13
[Co(DH},(p-phenet),INCS 10 417 66.9 5.5 5.52 13
CaC,0,H,0 10 423 63.0 5.0 4.70 19
[CoClL,(m-tol),] 5 425 76.5 6.1 6.10 16
CaC,0,-H,0 7.5 431 74.0 5.7 5.81 19
[Co(NioxH),py,INCS-1.5H,0 10 436 78.0 6.3 6.33 18
[CoCl,(m-tol}, ] 5 441 81.1 6.3 6.30 16
[CoCl,(m-tol),] 15 443 73.2 6.0 6.00 16
[Co(DiphH),(0-et-an),|Br 10 444 74.4 5.7 5.70 12
[CoCl,(mn-tol),] 10 447 79.8 6.3 6.30 to
[Co(NCS),(m-xy1),] 1 447 81.1 6.2 6.23 21
[Co(DiphH),(an),]C! 10 448 77.7 6.0 6.02 12
[Co(NCS),(p-tol), ] 10 453 81.1 6.2 6.32 17
[CoCl,(m-tol),] 15 454 74.8 5.7 5.71 16
[CoBr,(m-tol),] 15 455 79.4 6.2 6.24 135
[CoBr,(m-tol),] 10 456 © 81.5 6.3 6.30 15
[Co(NCS),(py),] 5 456 87.1 6.7 6.68 20
{CoBr,(m-tol),] 15 457 76.1 5.8 5.80 15
[CoBr,{m-tol),] 10 458 83.6 6.5 6.50 15
[Co(NCS),(p-tol),] 15 458 77.8 6.0 5.99 17
[Co(DiphH),(m-tol),]Cl 10 461 86.1 6.7 6.73 12
[Co(NCS),(py),] 10 467 86.1 6.7 6.59 20
[Co(NCO),(py),] 10 473 938 7.3 7.35 20
[Co(NCO),(py),] 15 476 85.3 6.5 6.49 20
[Co(NioxH),(o-phenet),]Br 10 481 96.1 7.4 741 14
[Co(DiphH),(m-am-phen),]NCS 10 494 99.5 7.5 7.51 23
[Co(NioxH),(an),]Br 10 495 97.4 7.2 7.24 14
(benzimidH),[PtCl ] 10 605 183.9 12.9 12.96 22

Symbols:  DH,=dimethylglyoxime;

NioxH,=cyclohexanedione-dioxime;

DiphH,=diphenyl-

glyoxime; an=aniline; tol=toluidine; et-an=ethylaniline: am-phen=aminophenol; anis=anisidine;
phenet=phenetidine; xyl=xylidine; py=pyridine; benzimid=benzimidazole
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Obviously, in this case the CE is a mere mathematical effect with no physical
meaning.

According to Eq. (14), a nearly linear CL may be expected if approximately
the same heating rate is used and the Ty, values of the processes involved are
close to each other. In this case, the isokinetic temperature which may be derived
by means of linear regression does indeed indicate a certain decomposition tem-
perature [7], as presumed by Garn {4].

However, these are not the only possibilities, since log(gETy ) may be almost
constant even if 7, varies in a relatively large interval. In order to illustrate this
possibility, some selected experimental data are presented in Table 5 in the se-
quence of increasing Ty 1. It may be seen that both F and log A display a clearly
increasing tendency in the same sequence. The 32 sets of kinetic paramelters pre-
sented obey a linear kinetic CL (1) and, by means of linear regression, the follow-
ing compensation parameters can be derived:

a=0.0646 and b=1.057

the correlation coefficient being r=0.997. The isokinetic temperature calculated
from a is T,=809.4 K, i.e. a value several hunderds of degrees higher than the de-
composition temperature.

In general, in homogeneous kinetics the validity of a linear CL is believed to
indicate an analogous reaction mechanism. In TG kinetics, a similar conclusion
may not be drawn. Inspection of Table 5 shows that the processes involved are
very different; moreover, the papers cited in this Table include numerous kinetic
parameters characterizing 1'G curves of the same substances recorded under not
very different working conditions, which do not obey the above CL at all. The va-
lidity of the CL for the kinetic parameters presented in Table 5 is a simple coin-
cidence. It merely happens that the product gET5 1 has almost the same value.

A more correct description of the correlation between £ and logA is given by
Eq. (13), for which Eq. (14) is a very good approximation. As seen from Table 5,
for logA” values calculated by means of Eq. (14), the agreement with the logA
values derived directly from the TG curves is excellent.
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